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Abstract 

The Karle & Hauptman and Goedkoop matrices are 
regarded as metric tensors in Hilbert space. This enables 
an E value to be expressed in terms of a finite number 
of other E's. It is shown that the knowledge of a finite 
number of E's  is theoretically sufficient to determine all 
the atomic coordinates. This number is smaller than 
8(N + 3) divided by the order of the point group, 
counting a complex E twice (N is the number of atoms 
in the unit cell). The phase problem is analyzed from a 
geometrical point of view and it is shown how proba- 
bility becomes certainty with a finite number of data. 
The ~2 relationship is obtained as a particular approxi- 
mation of an exact relationship between E's. This 
theory enables a criterion to be established which is 
equivalent to Tsoucaris's maximum determinant rule 
but more restrictive. The theory is valid for structures 
with both equal and unequal atoms. 

Introduction 

Several authors have studied the information content in 
Karle & Hauptman matrices by means of Hilbert space 
(Goedkoop, 1950; Eller, 1955; Kitaigorodsky, 1962; 
Tsoucaris, 1970). In this paper we discuss the 
geometrical properties of an N-dimensional vector 
space and show that the usual relationships of direct 
methods, from Harker & Kasper (1948) inequalities to 
Tsoucaris's and Podjarny's matrix formulations, can be 
geometrically derived and interpreted. This approach 
leads to new results concerning the phase problem and 
the computation of atomic coordinates. 

The theory does not require the usual assumptions 
of equal atoms, a random atomic distribution, or a 
large number of atoms in the unit cell. It is assumed 
that from the F values it is possible to calculate the E 
values, which in direct space represent point atoms. 
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Notation 

k, h, hp: Reciprocal vectors. 
N: Number of atoms in the unit cell. 
rj: Vector of coordinates of thej th atom. 
zj: Number of electrons of thej th  atom. 

n j  : 7. 1/2 

1 

6ij: Kronecker delta. 

N 

E(h) = ~ nj exp (2n/h. rj): Normalized structure factor. 
j = l  

t: Symmetry number. 
,~,~ = (A,~ I a,~): Each of the symmetry dements of a given 

space group expressed as an affine transformation, 
where A~ is the three-by-three matrix of the point 
group and a~ is the translation vector of the trans- 
formation. 

2. The theory 

(a) The Karle & Hauptman matrix as metric tensor 

Consider an N-dimensional vector space, N, which 
associates the vector 

N 

V(k)=  Z exp(2ztik.rj)ej (2.1) 
j = l  

with each point in reciprocal space. With the scalar 
product defined as 

[eil¢ j] = nj6 O, (2.2) 

then 

N N 

[V(k)lV(h)l = Z ~ exp (2rc/h.rj) 
i = l j = l  

x exp (--2m'k.ri) [eilej] 

N 

= • n j e x p ( 2 n / ( h - - k ) . u ) = E ( h - - k ) .  (2.3) 
j = l  
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For instance, the scalar product [V(0)lV(k)] is the 
normalized structure factor E(k). 

Any set of N linearly independent vectors V(hp) 
(p = 1 . . . .  , N) is called a basis; any vector V(k) can be 
expressed in a unique way as a linear combination of 
V(hp)'s. The coefficients of such a combination can be 
put in terms of E's.  To do this, the N covariant com- 
ponents [V(hp)lV(k)] = E ( k -  hp)(p = 1, ..., N) and 
the metric tensor H, whose general element is 

[V(hq)l V(hp)l = E (h ,  -- hq) = Hot, (2.4) 

are used. This tensor is a Karle & Hauptman matrix 
(Karle & Hauptman, 1950). Therefore, from the metric 
tensor and the covariant components the contravariant 
components can be calculated: 

N 

Cp= • (H-x)pqE(k--hq). (2.5) 
q = l  

Then, the vector V(k) can be expressed as a linear 
combination of vectors V(hp). That is, 

N 

V(k) = Z C, V(h,) 
p = l  

N N 

= Z Z (H-~)pqE( k -  ha) V(hp). (2.6) 
p = l  q = l  

Since [V(0)IV(k)] = E(k) and [V(0)l V(hp)] = E(hu),the 
scalar product of (2.6) by V(0) is 

N N 
E ( k ) :  Z ~ (a-1)poE(k--hq)E(hp) • (2.7) 

p = l  q=l  

This is the expression of an E value in terms of a finite 
number of other E's.  

The scalar product [(V(k)lV(k)] defines the squared 
norm of V(k). From (2.3) it is clear that 

IIV(k) 112 = [ V(k)l V(k)] = E(0), (2.8) 

and from (2.6) 

N N 

IIV(k)ll z :  ~ ~ (H-~)pqE(k--hq)E(hp--k).  (2.9) 
p = l  q=l  

Therefore, all vectors have equal norm [E(O)] I/z, 
but they are at different 'angles' with V(0). If these 
angles are small the vectors have large projections on 
V(0). Therefore, they are related to E 's  of large 
modulus and vice versa. 

Any set of s linearly independent vectors V(hp) 
(p = 1, ..., s), is a basis for the linear subspace, S, 
which they span. The projection of V(k) on S will be 
called Vs(k). Then, V(k) may be written as the sum of 
V~(k) plus its orthogonal complement P(k), 

V(k) = Vs(k) + P(k). (2.10) 

Then 

[V(hp)lV(k)l=[V(hr)lVs(k)] ( p =  1 . . . .  ,s), (2.11) 

because P(k) is orthogonal to S. Equation (2.11) means 
that the covariant components of Vs(k) are equal to 
the covariant components of V(k) in the basis which 
defines S. As S is a vector space the preceding develop- 
ment is totally applicable to it. Therefore, using (2.11) 
we can write by analogy with (2.6) 

Vs(k) = ~ ~. ( H s ' ) , q E ( k -  h o) V(h,), (2.12) 
p = l  q = l  

where H s means that the Karle & Hauptman matrix is 
of order s. The scalar product by V(0) is 

[V(0)lVs(k)l = Es(k) = Z (Hs~)pqE(k--hq)E(hp) • 

p=l q=l (2.13) 

Es(k) is a geometric approximation of order s to E(k), 
and Eg(k) = E(k). 

To estimate how Es(k) approaches E(k) it is neces- 
sary to calculate the squared norm of Vs(k). As Vs(k) 
and P(k) are orthogonal vectors it is clear from (2.10) 
that [Vs(k)l V(k)] = [ Vs(k) I Vs(k)]; therefore 

I IVs(k) l l  2 --= [ V s ( k ) l  V s ( k  )]  -= [ V ( k ) l  Vs(k)] 

= Z ~ (Hsl)pqE(k--hq)E(hp--k). (2.14) 
p = l  q=l  

As E(k) and Es(k ) may be interpreted as the pro- 
jections of V(k) and Vs(k) on V(0), respectively, then 
it is natural to think that IlVs(k)fl 2 compared with its 
upper bound E(0) may be an estimate of the accuracy 
of Es(k) as an approximation of E(k). 

A fundamental property of the squared norms 
llVs(k)ll 2 is that they form a non-decreasing sequence 
when s increases. Consider the subspaces of N, S and 
S + 1, being N ~ S + 1 ~ S and the vectors Vs(k ) E S 
and Vs+l(k) E S + 1. As usual Vs(k) and Vs+l(k ) are 
the projections of V(k) on S and S + 1 respectively. 
But, if S + 1 ~ S it is clear that Vs(k ) is also the 
projection of V~+ l(k) on S; then 

Vs+ l(k): Vs(k) + W(k). (2.15) 

Since W(k) must be orthogonal to S, [Vs(k)lW(k)] = 0. 
Therefore 

IIVs+l(k)llz = IIVs(k)ll 2 + IIW(k)ll 2. (2.16) 

Then, 

IIVs+l(k)Jl 2 _> NVs(k)ll 2, (2.17) 

which proves that the norms form a non-decreasing 
sequence when s increases. The upper bound of this 
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sequence is E(0) for s = N and the lower bound is 
IE(h~ - k)12/E(0) for s = 1. 

(b) Goedkoop's matr&es as metric tensors 
By taking symmetry into account it is possible to 

reduce the dimensionality of the vector space, defining 

N / t  t 

V(k) = ~ Z exp (27cilc~ry)ej, (2.18) 
j = l  a = l "  

where the ej's satisfy (2.2). It is shown in Appendix A 
that the scalar product is now 

t 

[V(k)lV(h)] = Y exp (2z6a,~.h) E(hA, - k). (2.19) 
~ = 1  

That is, the scalar product is equal to a linear com- 
bination of E's. 

From (2.19) it is evident that [V(k)IV(0)] = tE( -k )  
and it is shown in Appendix A that 

[V(0)I V(k)l = tE(k). (2.20) 

Using (2.19) and (2.20) it is possible to develop a set 
of equations similar to those in the preceding section, 
with a similar interpretation. The main advantage is that 
symmetry reduces the dimension of the vector space 
and therefore the order of the matrices involved in the 
equations. The main results are as follows. 
V(hp): The basis of the (N/t) space, where hp belongs 

to the non-symmetry-related Miller indices set. 
[V(hp)lV(k)]: Covariant components of V(k) in the 

basis V(hp); they can be calculated from (2.19). 

t 

Gpq = [V(hp)lV(hq)] = ~ exp (2~ia~.hq) E(hqA~-- hp): 
o t = l  

An element of the metric tensor, which is a Goedkoop's 
matrix corresponding to the totally symmetric repre- 
sentation (Goedkoop, 1950). The expression of V(k) 
in the V(hp) basis is 

N / t  N / t  t 

V(k)= Z ~ ~ (G-x)m exp(2nia~.k) 
p = l  q = l  ~ = 1  

x E(kA~,-- hq) V(h). (2.21) 

The projection on V(O) is 

N / t  N / t  t 

E ( k ) :  ~ ~ ~ (G-l)po exp(2zcia,~.k) 
p - - I  q = l  ~ = 1  

x E(kA,~- hq) E(hp). 
The squared norm of V(k) is 

t 

IIV(k) Ilz= Z exp(2maa-k)E[k(A,~--I)], 
o t = l  

(2.22) 

(2.23) 

I being the three-by-three identity matrix. It is shown in 
Appendix A that (2.23) is real and non-negative as 
expected. From (2.23) it is evident that the vectors have 
equal norms only in PI" 

The projection of V(k) on a subspace gives rise to the 
following equations: 

Vs(k)= ~ ~ ~ (Gsl)m exp(27ffao.k) 
p = l  q = l  ~ = 1  

x E ( k A ~ -  hq) V(hp), 

Es(k)= ~ ~ ~ (G~-a)pq exp(2~ia,,,.k) 
p = l  q = l  ¢~=1 

(2.24) 

× E(~. - h~) E(h.), (2.25) 

t t 

IlVs(k)ll2=~ ~. Y Y~ (Gsl)oq exp[2mlc.(a~-a~)] 
p = l  q = l  a = l  ]3=1 

x E(k G - hq) E ( h , -  k%). (2.26) 

The property that the norms form a non-decreasing 
sequence when s increases is also valid. 

3. The phase determination 

(a) A geometric approach to the phase extension 
problem 

Equation (2.25) - which includes (2.22), (2.7) and 
(2.13) as particular cases - may be used for phase 
extension. Then, the phase ofEs(k ) would be accepted if 
IEs(k)l approaches IE(k)l. But the natural geometric 
estimate is lIVs(k)HL Therefore the squared norm of the 
orthogonal complement of Vs(k), 

IIV(k)-- Vs(k)ll2 = IIV(k)ll 2 -  IIVs(k)ll 2, (3.1) 

and the difference IE(k)} -- JEs(k)l are two possible 
estimates of the accuracy of the phase of Es(k). It is 
worth noticing that irEs(k) is calculated from (2.25), no 
new phased E's are needed for calculating IIVs(k)ll 2. 

Even if the norm of the orthogonal complement of 
Vs(k) is small, the accuracy of the phase prediction is 
not guaranteed if IE(k)l is small. Since, if IE(k)l is 
small, V(k) makes a large angle with V(0) and then the 
orthogonal complement of Vs(k) is not necessarily com- 
pelled to maintain the direction of Vs(k) [with respect to 
V(0)] in order to obtain the correct projection on 
V(0). 

Recently, equation (2.25) has been used for phase 
extension in proteins (Podjarny, Yonath & Traub, 
1976) and nucleic acids (Podjarny & Yonath, 1977). 
These authors derived it from probabilistic arguments, 
but they cannot justify the validity in unequal-atom 
structures (Podjarny & Yonath, 1977). 
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(b) The minimal norm criterion 
Inequality (2.17) provides new constraints on the 

phases. With the correct phases, the norm of a vector 
must be non-decreasing when s increases. If a method 
were derived from this principle, its maximum sensi- 
tivity would be obtained when the gap between the 
upper and lower bounds of the sequence is a minimum. 
Then, for s = 1 we should choose E ( h  I - k) as the 
largest E. 

It is interesting to note that the condition 11V2(0)112 <_ 
E(0) leads to ILl(h)f 2 < (~) + (9 U(2h) if the base 
vectors V(h) and V(--h) are chosen in a centrosym- 
metric structure (Harker & Kasper, 1948). 

Another important result can be derived by equating 
the phases which minimize IIVs(0)ll 2. The phases of I-t s 
are known. From (2.14) the squared norm of V~(0) is 

llVs(0)Jlz = ~ DpqEpE*, (3.2) 
P,q 

where H;-~= D and E(hp)= Ep. The phases of Epwhich 
minimize this quadratic form can be calculated by 
means of the partial derivative of IlVs(0)ll 2 with respect 
to ~m 

,gJlv~(o)H 2 

&Pm 
= i(p~,qDpq C~pmEpE* 

-- P,q~ Opq t~qm Epe~q) (s ) 
= 2ilm q~-l D m q E m E *  " 

\q~=m 
(3.3) 

In Appendix C it is shown that 

s - -1  s - -1  

- -  Dqmfq: Z Z (Hs-,)pq-1 E(hm_hq ) E(hp) 
q = l  p = l  q = l  q~m 

det(H s- l) 
× , (3.7) 

det(Hs) 

where Hs_ l is obtained from H s suppressing in it the 
ruth row and the mth column. Therefore, the phases 
which minimize the quadratic form (3.2) are solutions 
of the system 

s ~ l  s -  1 

phase[E(hm)] = phase Z (Hs~ l)pq E(hm -- ha) 
L p = l  q = l  

- I  

x E(hp) 1 (m = 1, . . . ,s).  (3.8) 

This system expresses one phase in terms of the s - 1 
other phases. In other words, the maximum consis- 
tencies between phases compatible with the information 
content in the Karle & Hauptman matrix is obtained 
when the phases minimize the quadratic form (3.2). For 
s large it would be expected that 'maximum consistence 
between phases' means 'correct phases'. But the non- 
decreasing norm property provides the auxiliary 
criterion to test if these phases are the correct ones. This 
may be synthesized in the minimal norm criterion. 'A 
necessary condition for the phases that minimize 
IlVs(0)ll 2 to be the correct ones is that the sequence of 
norms be non-decreasing' (see Fig. 1). 

All the first partial derivatives must be zero in an 
extremum, then 

I m E m Eq \q~_imDmq ~=0 ( m =  1 . . . . .  s). (3.4) 

The solutions of these equations are 

phase (Era) =iphase DomE q (m = 1, ..., s) (3.5) 

and 

phase(Em)=phase~ ~DqmEq)q.m°=' 

(m = 1, . . . ,  s). (3.6) 

In Appendix B it is shown that the matrix of the second- 
order partial derivatives, C, is non-negative at the point 
defined by (3.6). Therefore, the extremum is a relative 
minimum. 

llV,(O), 

tl I ' 
/ '., 

I0 / ', B ."  .... - 

/ 
( "  t 

/' 

. . . . . . . .  f J  

{ I l I I I I [ I k I I I I 1 _ _ _  

0 3 6 9 12 15 S 

Fig. 1. Curve A: Successive values of the norms with the correct 
signs for the E's, corresponding to a centrosymmetric structure 
with N = 52. Curve B: The same as A except that the signs are 
those which correspond to a minimum of the norms. We note 
that curve B fails to be a non-decreasing sequence, a certain 
indication that something is wrong. 
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As was pointed out before, the extremum is a 
relative minimum because C is non-negative, but it 
would be a strict relative minimum only if C is positive 
definite. Then, if C is positive definite the function takes 
its minimum value at one unique point and if C is non- 
negative the function could take the same minimum 
value at a set of points. This means that more than one 
set of phases could satisfy system (3.8). This is a 
reasonable result bearing in mind that the equations 
involved in this system are transcendental. Uniqueness 
of the solution should not then be expected. Let us con- 
sider s = 2. In this case det(C) = 0 and system (3.8) 
reduces to 

phase[Efhl)] = p h a s e [ E ( h l -  112) E(h2)]' (3.9) 

phase [E (h2)] = phase[E(h 2 - hi) E(hl)]. 

This system does not unequivocally determine tp(hl) 
and {p(h 2) because it can be reduced to the relationship 
-~(h,) + ~,(hl- h9 + ¢,(h2)= 0. 

(c) Sayre's equation 

If the Karle & Hauptman matrix is written as 

H = E(0)0  + B), (3.10) 

where I is the identity matrix, H -l may be expanded in 
powers of B; that is 

1 
H - ~ = - -  Z ( -1 )  mBm. (3.11) 

E(0) m--0  

This series will be convergent if the absolute values of 
the eigenvalues of B are less than one. Calling AB the 
eigenvalue matrix of B, this condition reads 
- I  < AB < I, where the inequality thus written means 
inequalities between the corresponding diagonal terms. 
If B is an Hermitian matrix, A is its modal matrix and 
A t the Hermitian transpose of A, then [3 : A A B A*. 
From (3.10) it follows that 

H=E(O)(I+AABAI"),=AE(O)(I +AB)A t, (3.12) 

because A'rA = AA t -- I. Therefore, calling An the 
eigenvalue matrix of H, from (3.12) it follows that 

AtriA =E(0)( I  + AB) = A.. (3.13) 

Then, the convergence condition of series (3.11), 
--I < AB < I, can be put in terms Of AH: 

0 < AH < 2E(0) I. (3.14) 

These inequalities mean that the series will be con- 
vergent to H -l  if H is positive definite and its eigen- 
values are less than 2E(0). The convergence will be 
fast if the eigenvalues approach E(0), which is what 
would be expected if the off-diagonal elements of H 

were small. In this case H -l _~ [1/E(0)]I and then (2.13) 
reads 

Es(k) = ~. _ _ 1  E(k -- hp) E(hp), (3.15) 
p=l E(0) 

which resembles a partial sum of a Sayre's (1952) 
equation. However, there is an essential difference 
between both approximations. Sayre's hypothesis 
assumes equal atoms and if the atoms are very sharp, 
which is the case for (3.15), the sum would contain a 
very large number of terms. Several authors have 
derived relations similar to (3.15); for example, 
Hauptman & Karle (1953) and Karle & Hauptman 
(1956), giving probabilistic meaning to this partial 
sum, called it ~2. But, in general, these approaches 
need to assume that some sums have zero average and 
that the atoms are equal; then as the partial sums do 
not obey these requirements they were interpreted as 
probable relations. Our approximation only assumes 
small off-diagonal elements in the Karle & Hauptman 
matrix related to the E(hp)'s; then the sum may be 
convergent although it includes a few terms. That is, by, 
a simple inspection of the Karle & Hauptman matrix 
we would have a notion about the accuracy of the 
approximation and we could improve it by choosing 
suitable E(hp)'s. 

If the terms for m = 0 and m = 1 are considered in 
(3.11), equation (2.13) becomes 

E s ( k )  - - - E ( k -  hp) E(hp) 
=l E(0) 

_ _ ~  ~ 1 
p=l q=l E(0) --------T E ( k -  hp)E(hp-  hq)E(hq). (3.16) 

This resembles equation (2) of the phase-correction 
method of Hoppe & Gassmann (1968), but differs 
from it in multiplicative constants. The main remark is 
that the difference between the hypothesis leading to (2) 
and (3.16) is analogous to that pointed out between 
Sayre's hypothesis and the approximation which leads 
to (3.15). 

(d) The statistical theory 

The usual probabilistic formulae may be obtained, 
with a Karle & Hauptman or a Goedkoop matrix as 
covariance matrix, from the multi-dimensional dis- 
tribution law (s 

P(E 1 . . . .  , Es) = K 1 exp -- ~ DuE iE (3.17) 
t,j / 

(Tsoucaris, 1970; Castellano, Podjarny & Navaza, 
1973). These authors build the covariance matrix with 
U's. The covariance matrix in (3.17) is built with E's, 
and differs by a constant which is unimportant in the 
following analysis of the distribution laws. 
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Assuming that E i ( i  = 1, . . . .  , s; i 4: m) and H~ are 
known, the distribution law of the ruth structure factor 
is 

P[EmlE~ . . . .  , E i . . . .  , Es;  (i 4= m)] 

( ) [E m --Era 12 
= K 2 exp - a 2 , (3.18) 

where K~ and K 2 a r e  normalization constants, and 

m 1 
Era-- ~ DpmEp,, 

Dram p=l 
p-~ m 

(3.19) 

1 
a 2 - (3.20) 

Dram 

(de Rango, Tsoucaris & Zelwer, 1974). In Appendix C 
it is proved that 

1 det(Hs) 
0-2~  __ 

Dmm det  (Hs-  1) 
= IIV(hm)-- Vs_l(hm)[[ 2 (3.21) 

and from (C.6) it follows that 

s--I s--I 
E m = ~. ~ (}-t~ 1_ l)pqE(h m --  hq )E(hp)  

p=l q=l 

= Es_, (hm). (3 .22)  

Therefore, the probabilistic parameters may be 
geometrically interpreted. The expected value is the 
geometric s - 1 approximation and the variance is the 
norm of the orthogonal complement of Vs_l(hm) .  qz 
forms a non-increasing sequence when s increases and 
for s = N + 1, E m = E N ( h ~ )  = E(hm) , a z = 0 and 
p r o b a b i l i t y  b e c o m e s  c e r t a i n t y .  

From (3.18) it is evident that the distribution law 
of the phase o f E  m is 

21Eml IEm[ c ° s  [~Orn --  ~(Em)] 
P(~m) = K2 exp a 2 (3.23) 

(De Rango et  al . ,  1974). The reliability of the phase 
prediction depends not only on the orthogonal comple- 
ment norm but also on the modulus of the E's .  Equation 
(3.23) contains these two magnitudes in the correct 
way because the numerator in the argument is of the 
order of IE(hm)l 2 and the denominator is equal to the 
orthogonal complement squared norm. 

On the other hand, the quadratic form in (3.17) is 
IIVs(0) II 2. There is a close connexion between Tsoucaris 's 
(1970) maximum determinant rule and our criterion of 
norm minimization. It follows that this rule is derivable 
and interpretable geometrically; that is, without 
probabilistic arguments. It is notable that Tsoucaris 's 

formulation leads to a Karle & Hauptman matrix 
whose elements correspond to the squared density; 
therefore this formulation is strictly valid only in the 
equal-atoms case. Moreover, the properties of norms 
impose a far more restrictive condition than that of the 
non-increasing sequence of  Tsoucaris 's  D m deter- 
minants. 

As the Tsoucaris 's D s determinants are built with 
U's, then D s = [de t (Hs)] / [E(O)]  s. Therefore, from (3.21) 
it follows that 

O s det(H~) [[V(hm) --  Vs_,(hm)l l  2 
-- = , (3.24) 

Ds_~ det (Hm_,) E(O) IlV(hm)ll 2 

where Hm_~ is the matrix obtained from H s by sup- 
pressing the mth row and the ruth column. In this case 
H s is built in such a way that the mth row and the mth 
column are the last. Tsoucaris 's  condition ( D s / D  s_ 1) < 

1 is equivalent to IIV(hm) - -  V s _  1 (hm)ll 2 < IIV(hm)ll2; 
that is, the squared norm of the orthogonal complement 
is compared with its upper bound. But, inequality (2.17) 
also implies that 

IIV(hm)-- Vs(hm)ll 2 -< [ IV(hm)--  Vs_l(hm)ll2;  (3.25) 

therefore 

det(H~+,) det(Hs) 
< . (3.26) 

det(H~) - det(H LI )  

Then, not only is the sequence of determinants non- 
increasing but the sequence of quotients is also non- 
increasing. Note that the matrices from which the 
quotients are built differ always by the mth row and the 
mth column; therefore H ~' 4: H r 

Karle's (1971) generalized tangent formula can now 
be interpreted from a geometrical point of view. This 
formula is based on the quotient of determinants ? . 
Jm p(h) = A m p(h)/A,n u [equations (6), (8) and (9) of 
Karle. (1971)}. Am. p ~iiffers from A ' p ( h )  by the sup- 
presslon of the first column and the last row. Then, 
developing A" p(h) along the first column and along the 
last row, and bearing in mind the reasonings in 
Appendix C, it follows that 

(~m,p(h)- ZJ~n,p(h) 

Z~m,p 
m-2 m-2 

=(-1)  m Z Y (H2_9~E(h--k)E(k~) 
U:I v=l 

= (-- 1)m EPm-z(h)- (3.27) 

Therefore, Jm.p(h) is proportional to EUm_2(h); that is, 
it is proportional to the projection on V(0) of the 

- projection of V(h) on the pth subspace of dimension 
rn - 2. The index p labels a particular subspace of 
dimension rn - 2 (Karle, 1971). 
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The assumption E(h )  oc (6 m p(h)}p [equation (11) of  
Karle  (1971)] is equivalent to ]~(h) oc(E~_2(h))p.  The 
generalized tangent  formula  is an average of  geometric 
approximat ions  on subspaces of  the same dimension. 
F r o m  the geometric approach  it is evident that  the 
element of  the set {E~(h), EZm(h), . . . ,  E~(h) ,  . . . ,  
E~(h)} which gives the best phase  indication is the 
element associated with the vector VPm(h) with the 
largest norm.  The advantage  of  averaging this set is not 
clear, except to take into account  inaccuracies  in the 

data.  

4. Determination of atomic coordinates 

Equat ion (2.6) is a vectorial relationship; it is therefore 
an equality between components  

N N 

exp(2m'k . r )  =" ~ ~ (H-~ )mE(k  - hq) 
p = l  q = l  

× exp (2m'hp. r), (4.1) 

where r = r j ( j  = 1, . . . ,  N).  This is the equat ion 
of  a surface in the variables (x,y,z) = r, which contains 
all the atomic positions. If  three such surfaces are 
constructed,  changing k in (4.1), the a toms will be at  
their intersections. These intersections will define, 
except in special cases, a finite number  of  points not all 
of  which will correspond to atomic coordinates.  The 
number  of  spurious points depends strongly on the 
basis selected and on the vector  chosen to be expanded.  
It has been observed that  this number  increases with 
increasing Miller indices (see Fig. 2). 

In linear structures the highest f requency in the 
tr igonometric function in (4.1) is at least Nit .  As we 
see in Fig. 2 all the zeros correspond to atomic positions 
with the lowest frequencies. For  this s tructure the way  
of  choosing the minimal frequencies is unique, while for 
two-dimensional  (see Fig. 3) and three-dimensional 
structures there is more  f reedom in the selection of  
Miller indices smaller than  Nit .  

Choosing the lowest frequencies the smallest number  
of  different E ' s  needed to determine the atomic coordi- 
nates in linear structures is N. For  three-dimensional 
structures the minimum is also obtained choosing the 
lowest frequencies for the basis vectors;  that  is, 
selecting those N + 3 reciprocal  vectors which are 
nearest  to the origin. It means  that  they are all within a 
sphere of  radius R, equal to the greatest  modulus  of  the 
selected reciprocal  vectors.  As the density of  points in 
reciprocal space is a constant  equal to the volume V of 
the unit cell in direct space, then 

N + 3 = (~) rcVR 3. (4.2) 

The differences among  these vectors are all within a 
sphere of  radius 2R, which contains 

( ] )xV(2R)3 = 8 ( N  + 3) (4.3) 

S O L V I N G  C R Y S T A L  S T R U C T U R E S  

points. This is the number  of  different E ' s  needed to 
construct  a metric tensor and three sets of  covar iant  
components .  In the presence of  symmet ry  (4.3) is 
divided by t. Actual ly,  Friedel 's law reduces (4.3) to 
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1 ' i I :  : 
I 1 

i I 
I i : 
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I 
1 

i 
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i I 
i 
1 
i 
i 

Fig. 2. Centrosymmetric linear structure with N = 20 and 
fractional coordinates x~ = +0.06, +0.09, +0.15, _+0-17, _+0.28, 
+0.32, +0.34, +0.43, +0.47, +0-49. Plot of the difference 
between the two members of (4.1). The metric tensor is a 
Goedkoop matrix. Curve A: k = 0, hp = 1, 2 . . . . .  10. All the 
zeros correspond to atomic positions. Curve B: k = 1, hp = 2, 
3 ..... 11. One zero does not correspond to atomic positions. 
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Fig. 3. Centrosymmetric two-dimensional theoretical structure 
with N = 12 and atomic coordinates (xj, y i) = (0.43, 0.23), 
(0.355, 0.439), (0.105, 0.439), (0.03, 0.23), (0.105, 0-135), 
(0.355, 0.135) and the symmetry-related ones. Plot of the 
curves represented by (4.1), with base vectors hp = 10, 01, 11, 
1 i, 20, 02 and metric tensor G, for two different k's. Curve 
A: k = 03. Curve B'. k = 22. The intersection of both curves 
corresponds to atomic positions. There are not spurious inter- 
sections in the remainder of the unit cell. 
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half, but in order to distinguish between centro- and 
noncentrosymmetric structures a complex E is counted 
twice. 

It would be possible to reduce the number of E ' s  
needed for atomic-coordinate determination to 3N, 
the number of unknowns, only if it were possible 
to select a set of  N V's which form an orthogonal basis. 
In this way the metric tensor that arises would be 
diagonal. For constructing one surface only N E ' s  
would be required. 

It is interesting to note that von Eller's (1962) 
forbidden-domains method can be easily derived geo- 
metrically. The covariant component of the vector e~ in 
the basis V(hp) is [V(hp)lei] : niexp(--27rt]lp.ri); then 
the squared norm of the projection of e~ on S is 

Iles.,ll 2= ~ ~ (H~-'),qn~ exp[2zd(hp--hq).ri]. (4.4) 
p = l  q = l  

On the other hand, from (2.2) Ileill 2 = n r Then, the 
inequality lies, ill 2 < Ileill 2 leads to 

~ ~ (H~-')pqn/ exp[2z~i(hp--hq).r] _< 1. (4.5) 
p = l  q = l  

The left-hand side of (4.5) as a function of r defines 
regions in the unit cell forbidden for atoms of weight n/ 
or higher. These are von Eller's forbidden domains. 
From the geometrical approach it is clear that the 
inequality lies, ill 2 ___ Iles+l,ill 2 could also be considered 
and that for s = N (4.5) is an equality. 

At present we do not know which method would 
require the lesser amount of  exper imental  data. (Fig. 5 
is as Fig. 2 but with an incomplete basis.) 

The authors thank Dr E. E. Castellano for many  
helpful discussions and Dr D. Avalos for his critical 
reading of the manuscript. We also thank Drs H. 
Hauptman and J. Karle for their letters in support of 
this paper and their comments and criticisms. 
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Fig. 4. Plot of p(x) corresponding to the structure described in 
Fig. 2, constructed with a Fourier series partial sum that includes 
the same coefficients which suffice to construct the curve A in 
Fig. 2. 

5. Summary 

This geometrical approach suggests that the com- 
putation of atomic coordinates can be addressed 
independently of Fourier series. The main proposition 
is that the phase problem can be reduced to the deter- 
mination of those phases which allow the construction 
of three surfaces. 

Inaccuracies in experimental data may require an 
increase in the number of surfaces because of instability 
in matrix inversions. Some successful phase extensions 
involving high-order matrix inversions have been 
reported (Podjarny et al., 1976), and it is conceivable 
that this will not be an insurmountable obstacle. On the 
other hand it is interesting to note the difference be- 
tween the theoretical requirements of  (4.1) and the 
Fourier series. A method derived from (4.1) requires a 
finite number of E ' s  and the Fourier series requires an 
infinite number. From Fig. 4 it is evident that, with 
theoretical data, (4.1) is better than the Fourier series. 

I ;B. .  / C 

::" ". / f  ~x 

0 f~, r ,,'-',. , ',.. ,~ 
] t - x . ,  \ ,' ..... " . . . . .  0 " 5 x ~  

I / ~ / . .  [ / ' ,  / 
I i i  " \ . . , /  ." 

. 
/ 

I , / 
I / /  

/ , i  

/ 
A - . . ,  / 

l . . / /  //" ", \ ",. . I 

/ " .  / 
/ , ,  / 

/ x / 
/ /  , _ /  

Fig. 5. As in Fig. 2 but with an incomplete basis. Curve A : k = 0, 
hp = 1, 2, 3. Curve B: k = 0, hp = I, 2 ..... 6. Curve C: k = 0, 
hp = 1, 2 ..... 9. The atomic positions are approximately deter- 
mined by curve C. 
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A P P E N D I X  A it follows that 

(a) Calculus of  the scalar product defined by (2.19) 

From (2.18) and (2.2) we can write 
t t N / t  N / t  

[V(k)lV(h)]= ~ ~. ~ ~ exp[2xi(l~,~ri 
a=l/3=1 i=lj=l 

N / t  

IIV(k) 112= Z njlgj 12, (A.8) 
j = l  

which proves that IIV(k)ll 2 is real and non-negative, as 
expected. 

- ld~r j ) l  [ejletl 

t t N / t  

= ~ ~ ~ exp[27d(i~,~ 
a = l  ,5=1 i = 1  

A P P E N D I X  B 

An element of the second partial derivatives matrix is 

- k ~ ) . r i l n  t. (A.1) 

Applying the rearrangement theorem in the sum over a 
it follows that 

t t N / t  

[V(k)lV(h)] = ~ X ~ e x p [ 2 z d ( l ~ - -  k).A[~ri]n i 
t r = l  /~=1 i = 1  

t 

= E exp(2ma,~.h)E(h.A,~--k). (A.2) 
a = l  

(b) Proof of(2.20) 

The normalized structure factor E(h) is 

t N/t 
E ( h ) =  ~ ~ n jexp(2m' l~r j ) .  

a = l j = l  

Applying the rearrangement theorem 

(A.3) 

CmrI  D 

02 IIVs(0) II 2 

8 q~ m 8 ~o ,, 
- - D m n E m E *  + DnmEnE* 

(~DmqEraEq * q) - -  ~mn * + DqmEmE " (B.1) 

Let X be an arbitrary s-dimensional vector such that 
X 4= 0. if the quadratic form XCX* is non-negative the 
extremum is a minimum: 

XCXt = X DmnEmE*XmX* + E DmnEnE*XmX* 
m,n m,n 

EmEqXm _ _ ~ D m o  • 2 
q , m  

Dm q * 2 (B.2) -- E z E q X  m. 
q, m 

t N / t  

E ( h ) =  Z Z njexp(2zgh~A,~rj)  
a ~ = l j = l  

Changing the index names and multiplying by (-1),  it 
follows that 

= exp (2n'/a~. h) E(hA~. (A.4) 

Then, replacing (A.4) in (2.19) with k = 0 if follows 
that 

t 

[V(0)lV(h)] = E exp(27da/3.h) E(hA~) = tE(h). (A.5) 
/3=I 

(c) Calculus of  IIV(k)ll 2 

Equation (2.23) can be derived from (A. 1) by putting 
h = k; then 

t t N / t  

IlV(k) 112= ~. X ~. n~ expt2m~(,~,~-A~)rjl. (A.6) 
a = l / ~ = 1  j = l  

Defining 
t 

gi(k)= ~ exp(2zak~r i )  , (A.7) 
a = l  

- X C X t  = ~ • z 2 , DmnEmEn ( X  m -t- X n -- XmX~n -- XnX*m) 
m, ll 

= ~. DmnEmE*lXm--Xnl  2 
m , n  

-< MaxlXu-Xvl2 (m~ ' , , . v  ~ Dm"EmE*~) " (B.3) 

But, with solution (3.6): 

~ DmnEmE*=--IEmll~ DnmEnl. (B.4) 

ll 2 m II n~rn  

Therefore, 

XCX*~ MaXu, v ] x u -  xv}2 E ]gm] ] ZVnmgn} ~ O. (B.5) 
m l! 

n~ra 

This inequality proves that C is non-negative. 
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A P P E N D I X  C 

Calculate the sum 

~. (Hs')umE(hp). 
p = l  
pCm 

(C.1) 

It is clear that 

--1 1)P+m Min°r (Hs)mp 
(Hs)pm : (--  , (C .2 )  

det(H~) 

where the Minor is the determinant of the matrix 
obtained from H s suppressing the mth row and the pth 
column. If this matrix is H's, then Minor(Hs)mp = 
det(H'~). Assume that the mth row and the mth column 
are the last ones. If they are not, it is always possible 
to rearrange the matrix without changing its meaning. 
On the other hand, it is clear that this rearrangement 
does not change the determinant sign because rows 
and columns are interchanged twice. 

Det(H's) can be calculated by developing it along its 
last column; that is, the mth. Therefore, 

s--1 

det(H's)= Z Hq,n(--1)(--1)q+mMin°r(H'~)qm • (C.3) 
q=l 

The factor (--1) has been introduced to take into 
account the suppression of the pth column. Again, 
Minor (H 's)0m is the determinant of the matrix obtained 
from H's suppressing the qth row and the mth column. 
Then, Minor (H '~)qm is the determinant of the matrix 
obtained from H~ suppressing the ruth and the qth rows, 
and the mth and the pth columns. Therefore, 

Minor (H 's)qm = Minor (H~_ 1)qp, (C.4) 

where H~_ 1 is the matrix obtained from H s suppressing 
the ruth row and the ruth column. From (C.4), (C.3) 
and (C.2) it follows that 

S-- 1 Minor (H~_ l)qv 
-1 n q m (  1)p+m+q+m+l (Hs)pro= Z -- 

q=l det(Hs) 

s- l det (H s- 1) 
= - Y (H~-_ ~ l)pqf(h m- hq) (C.5) 

0=1 det(H~) 

Therefore, 

(Hsl)pmE(hp) 
p=l  
pCm 

s-i s-I det(Hs_l ) 
=--v=1 y q=~ y (H '~ l )PqE(hm-hq)E(h)  det(Hs) (C.6) 

where 

det (H s- 1) 
_ ( H - l  - -  s )mm : Dmm" (C .7 )  

det(H s) 

Since det(Hs) can be calculated developing it along the 
mth row and then along the rnth column, by reasoning 
analogous to that just given, it is clear that 

S--1 

det(Hs)= ~ Minor(H~)mp (-1)  m+p 
p=l  

" 1  

x E(hp-- h~l+  det(H~_l)Hm, . 

s--1 s--1 

_- _ ~ ~ Minor(Hs_l)qpE(hp- hm) 
p=l  q=l 

hp(--  1)P+q / + det (H s- i) Hmm" (C.8) 

" 1  

× E(hm 
J 

Then, 

1 1 det(Hs) 
--1 Dram (Hs)ram det(Hs-l) 

s--1 s--I 

= Hmm -- ~ ~ (H s --1_ 1)mE (hp-  h m) E (h m --hq) 
p=1 q=l 

= l l V ( h m ) l l  2 - -  IlVs_ a(hm)tl 2 

= " V ( h D  - Vs_ , (hm) ,  2 (C.9) 

The relationships obtained in this Appendix are also 
valid if symmetry is considered. For example, the 
quotient det(fis)/det(Gs_ 1) may be interpreted as the 
squared norm of the orthogonal complement of 
Vs_ ,(hm). 
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